

Course Information Sheet

CSCI 2610
Discrete Mathematics for Computer Science

Brief Course Description

(50-words or less)

This course presents a survey of the fundamental mathematical tools used

in Computer Science: sets, relations, and functions; propositional and

predicate logic; proof writing strategies such as direct, contradiction and

induction; summations and recurrences; elementary asymptotics and

timing analysis; counting and discrete probability with applications in

computer science.

Extended Course

Description / Comments

CSCI majors should enroll in this course MATH/CSCI 2610 instead of

CSCI 2611.

Pre-Requisites and/or Co-

Requisites

MATH 1113: Pre-Calculus This course cannot be taken for credit if

student has received credit for MATH/CSCI 2611

Required, Elective or

Selected Elective

Required Course

Approved Textbooks

(if more than one listed, the

textbook used is up to the

instructor’s discretion)

Kenneth H. Rosen Discrete Mathematics and its Applications 7th

Edition ISBN-13: 978-0073229720

Specific Learning Outcomes

(Performance Indicators)

This course presents a survey of topics in discrete mathematics most

relevant to students studying computer science. At the end of the semester,

all students will be able to do the following:

1. Construct basic mathematical arguments using propositional
logic, including structures such as quantified statements, normal
form constructions, and Boolean algebra constructions.

2. Carry out set theoretic operations to describe and compare
unordered collections.

3. Relate sets to functions; Use functions to describe complexity as
well as basic and recursive sequences and progressions.

4. Be able to select and use an appropriate proof strategy for a
potential or known theorem.

5. Carry out operations on different integer representations, and
construct valid arguments for statements related to modular
arithmetic.

6. Construct valid arguments for statements related to counting
and discrete probability.

ABET Learning Outcomes A. Graduates of the program will have an ability to: Analyze a complex

computing problem and to apply principles of computing and other

relevant disciplines to identify solutions.

B. Design, implement, and evaluate a computing-based solution to meet

a given set of computing requirements in the context of the

program’s discipline.

C. Communicate effectively in a variety of professional contexts.

D. Recognize professional responsibilities and make informed

judgments in computing practice based on legal and ethical

principles.

E. Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.

F. Apply computer science theory and software development

fundamentals to produce computing-based solutions.

Relationship Between

Student Outcomes and

Learning Outcomes

 ABET Learning Outcomes

Specific

Learning

Outcomes

 A B C D E F

1 ⚫

2 ⚫

3 ⚫

4 ⚫ ⚫ ⚫

5 ⚫

6 ⚫

Major Topics Covered

1. Logic and Predicates (Knowledge level: Usage)

a) Propositional Logic: construct compound propositions for various

logic statements and natural language propositions

b) Propositional Equivalencies (Identities): use the identity laws to show

propositional equivalencies and verify their truth values

c) Truth Tables: construct truth tables for compound propositions and use

them as a tool for proving equivalencies

d) Normal Forms: transform compound propositions into conjunctive

normal form and disjunctive normal forms, including the canonical

normal forms

e) Minimization: reduce the number propositional variables and operators

of a compound proposition to an equivalent proposition

f) Predicates and Quantifiers: construct compound propositions for

various logic statements involving predicates and quantified statements

g) Rules of Inferences: use the laws of inference to derive a given

conclusion from a set of propositions

h) Boolean Algebra and Circuits: use Boolean algebra notation and circuit

diagrams to construct/visualize compound propositions

2. Set theory (Knowledge level: Usage)

a) Sets and Operations: define set structures using different notations

and define and use operations on sets

b) Subsets and Powersets: define subsets of a set and construct the

powerset.

c) Set Identities and Equality: use the identity laws of sets to show

two sets are equal

d) Finite Cardinality: determine the cardinality of a finite set

e) Common Sets: recognize and apply common sets in the context of

set theory

f) Cartesian Products, Tuples and Relations: construct relations on

sets of tuples

3. Functions (Knowledge level: Usage)

a) Function Types: define one-to-one, onto and one-to-one

correspondence functions using propositional logic; given a

function prove that it is any of the three and whether it has an

inverse or not

b) Sequences: determine that a given sequence is an arithmetic or

geometric progression and identify the associated constants

c) Recursive definitions and Recurrences: construct recursive

definitions for relations and sets; define the recurrence relation of

sequences with its initial condition(s)

d) Summations: understand the recursive and iterative properties of

summations

e) Cardinality of Sets, Countability and Diagonalization given a finite

set determine the cardinality; given an infinite set determine

whether it is countable or uncountable

f) Given a growth function, determine its best Big-O complexity

class.

4. Proof Strategies (Knowledge level: Assessment)

a) Be able to form a valid argument from a set of assumptions using

each of the following proof strategies: direct, contraposition and

contradiction.

b) Be able to form a valid argument using each of the following proof

strategies: construction and counter example

c) Induction: prove a property holds for a discrete infinite set with a

smallest value

d) Given an incorrect proof, identify the error

e) Be able to select an appropriate proof strategy for any given

theorem

5. Number Theory (Knowledge level: Usage)

a) Divisibility and Modular Arithmetic: given two numbers find their

divisor and remainder; use properties of divisibility and modular

arithmetic in a proof

b) Congruence Relations: prove the identity laws for congruence

relations

c) Integer Representations (Base Conversions): given an integer in

one base convert it to another base with special focus on base 2, 8,

10 and 16

d) Bitwise Operations: apply logic operators on bit strings

e) Primes and composites: identify whether a number is prime or

composite; identify the prime factors of a composite number

f) Euclidean Algorithm: trace though the Euclidean algorithm to find

the GCD

6. Counting (Knowledge level: Usage)

a) Rules of Counting: use the product and sum rules to determine the

cardinality of a set

b) The Pigeonhole Principle: apply the Pigeonhole principle to show

that there are more than one items that share a given property

c) Permutations and Combinations: determine the number of tuples or

subsets of a set

d) Binomial Coefficients and Pascal’s triangle: find the coefficients

for a binomial expansion

7. Probability (Knowledge level: Usage)

a) Probability Theory (Laplace): define the sample space and the

event space and apply the basic rules of probability

b) Basic Rules of Probability: apply the sum, product, conditional and

independence rules

c) Distributions: compute the probability of events in a uniform

distribution

d) Random Variables: explain potential events using the concept of

random variable (Knowledge level: Familiarity)

e) Expected Value: compute the expected value in a given trial

(Knowledge level: Familiarity)

f) Variance (time permitting): compute the variance

g) Bayes’ Theorem (time permitting): apply the Bayes’ formula

Knowledge Levels The following is the ACM’s categorization of different levels of mastery:

Assessment, Usage, and Familiarity. Note that Assessment encompasses

both Usage and Familiarity, and Usage encompasses Familiarity.

Familiarity: The student understands what a concept is or what it means.

This level of mastery concerns a basic awareness of a concept as opposed

to expecting real facility with its application. It provides an answer to the

question “What do you know about this?”

Usage: The student is able to use or apply a concept in a concrete way.

Using a concept may include, for example, appropriately using a specific

concept in a program, using a particular proof technique, or performing a

particular analysis. It provides an answer to the question “What do you

know how to do?”

Assessment: The student is able to consider a concept from multiple

viewpoints and/or justify the selection of a particular approach to solve a

problem. This level of mastery implies more than using a concept; it

involves the ability to select an appropriate approach from understood

alternatives. It provides an answer to the question “Why would you do

that?”

Modified 01/08/2020 by Dr. Cotterell and Dr. Yazdansepas

11/05/2019 by Dr. Barnes, Dr. Cotterell, Dr. Funk, Dr. Hollingsworth

and Dr. Yazdansepas

Approved Yes

