

Department of Computer Science

Course Information Sheet CSCI 4560

Evolutionary Computation and Its Applications

Brief Course Description
(50-words or less)An in-dept
exploration
applicationExtended Course
Description / CommentsThe course
evolutiona
to apply ev
study.Pre-Requisites and/or Co-
Requisites
Required, Elective or
Selected ElectiveCSCI 2720
Selected ElectiveApproved Textbooks
(if more than one listed, the
textbook used is up to the
instructor's discretion)Author(s):
Title: Intro
Edition: Co-
978-3-540Specific Learning Outcomes
(Performance Indicators)This cours
end of the
1. Formula
search/or
variation

An in-depth introduction to evolutionary computation methods and an exploration of research problems in evolutionary computation and its applications which may lead to work on a project or a dissertation.

The course is appropriate both for students preparing for research in evolutionary computation, as well as science and engineering students who want to apply evolutionary computation techniques to solve problems in their fields of study.

CSCI 2720 or CSCI 2725

Selected Elective Course

Author(s): A.E. Eiben and J.E. Smith Title: *Introduction to Evolutionary Computing* Edition: Corrected second printing 2007 ISBN-13: 978-3-540-40184-1

This course presents a survey of topics in evolutionary computation. At the end of the semester, all students will be able to do the following:

- 1. Formulate a problem as an evolutionary computation search/optimization by specifying representations, selection and variation operators.
- 2. Write a program or use a package to implement an evolutionary algorithm.
- 3. Conduct evolutionary optimization experiments and properly report and discuss the results.
- 4. Effectively present an evolutionary computation article to an audience.
- 5. Review and critique evolutionary computation articles.
- 6. Reason about the schema theorem and the theory of evolutionary computation.

Relationship Between Student Outcomes and Learning Outcomes

		Student Outcomes										
		а	b	c	d	e	f	g	h	i	j	k
ning omes		•	•							•		
		•										
		•		•						•		
ear		•					•					
- 0		•								•		
	6	•										

Major Topics Covered	Introduction (5-hours)				
(Approximate Course Hours)	Components of an Evolutionary Algorithm (2.5-hours)				
3 credit hours = $3/.5$ contact hours	Genetic Algorithms (4.5-hours)				
A creat hours – 50 contact hours	Evolution Strategies (2.5-hours)				
topic covered	Evolutionary Programming (2.5-hours)				
	Genetic Programming (2.5-hours)				
	Learning Classifier systems (3.5-hours)				
	Parameter Control (2.5-hours)				
	Multi-modal Problems(2.5-hours)				
	Multi-objective Evolutionary Optimization (2.5-hours)				
	Hybridization and Memetic Algorithms (2.5-hours)				
	Working With Evolutionary Algorithms (3.5-hours)				
	Theory (3.5-hours)				
	Paper Presentations (10-hours)				
Course Master	Dr. Khaled Rasheed				