

Course Information Sheet

CSCI 4780
Distributed Computing Systems

Brief Course Description

(50-words or less)

The fundamental concepts in distributed computing and the practical

techniques for building distributed systems. Topics include distributed

computing models, naming, synchronization, replication and consistency,

fault tolerance, and security. Widely deployed distributed systems are used

as case studies. Students design, implement, and analyze prototype systems.

Extended Course

Description / Comments

 This course is targeted for undergraduates in their junior/senior years.

Pre-Requisites and/or Co-

Requisites

CSCI 2720: Data Structures

And either

CSCI 4730: Operating Systems OR CSCI 4760: Computer Networks

Required, Elective or

Selected Elective

Selected Elective Course

Approved Textbook

Author(s): Andrew S. Tanenbaum and Maarten Van Steen

Title: Distributed Systems: Principles and Paradigms

Edition: Second Edition

ISBN-13: 0-13-239227-5

Specific Learning Outcomes

(Performance Indicators)

This course presents the fundamental concepts in distributed computing

systems. At the end of the semester, all students will be able to do the

following:

1. Define, identify and distinguish various types of transparencies, and

analyze their importance for various distributed applications

2. Develop (in multi-student team) software prototypes applying variety

of distributed system architectures.

3. Define, recognize and distinguish various types of communication

(synchronous, asynchronous, persistent, transient).

4. Explain the steps of a remote procedure call (RPC)

5. Develop (in multi-student team) a multi-threaded software that

applies thread synchronization functionality (locks and barriers).

6. Outline the steps involved in resolving flat/structured names using

recursive and iterative approaches.

7. Develop (in multi-student team) a distributed software for resolving

flat/structured names

8. Hand-simulate operations of logical clocks (Lamport and Vector

clocks) and present the outcomes to a technical audience.

9. Define and distinguish various types of data consistency models

10. Analyze and present the design and internal workings of a distributed

computing application to a professional audience.

ABET Learning Outcomes A. Graduates of the program will have an ability to: Analyze a complex

computing problem and to apply principles of computing and other

relevant disciplines to identify solutions.

B. Design, implement, and evaluate a computing-based solution to meet

a given set of computing requirements in the context of the program’s

discipline.

C. Communicate effectively in a variety of professional contexts.

D. Recognize professional responsibilities and make informed

judgments in computing practice based on legal and ethical

principles.

E. Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.

F. Apply computer science theory and software development

fundamentals to produce computing-based solutions.

Relationship Between

Student Outcomes and

Learning Outcomes

 ABET Learning Outcomes

Specific

Learning

Outcomes

 A B C D E F

1 ⚫ ⚫ ⚫

2 ⚫ ⚫ ⚫

3 ⚫ ⚫

4 ⚫ ⚫ ⚫

5 ⚫ ⚫ ⚫ ⚫

6 ⚫ ⚫ ⚫

7 ⚫ ⚫ ⚫

8 ⚫ ⚫ ⚫

9 ⚫ ⚫

10 ⚫ ⚫ ⚫

Major Topics Covered

1. Goal and Types of Distributed Systems (Usage)

2. Distributed System Architectures (Assessment)

3. Threads and processes in distributed systems (Assessment)

4. Communication models (Usage)

5. Remote procedure calls and sockets (Assessment)

6. Naming and name resolution (Assessment)

7. Distributed hash tables and consistent hashing (Assessment)

8. Physical and Logical Clocks (Usage)

9. Mutual Exclusion and Leader Election (Usage)

10. Data Centric Consistency Models (Familiarity)

11. User Centric Consistency Models (Familiarity)

12. Replica Management (Usage)

13. Reliability in Distributed Systems (Usage)

14. Distributed Commit Protocols (Familiarity)

15. Distributed File Systems (Familiarity)

16. World Wide Web-based Systems (Familiarity)

Knowledge Levels The following is the ACM’s categorization of different levels of mastery:

Assessment, Usage, and Familiarity. Note that Assessment encompasses

both Usage and Familiarity, and Usage encompasses Familiarity.

Familiarity: The student understands what a concept is or what it means.

This level of mastery concerns a basic awareness of a concept as opposed

to expecting real facility with its application. It provides an answer to the

question “What do you know about this?”

Usage: The student is able to use or apply a concept in a concrete way.

Using a concept may include, for example, appropriately using a specific

concept in a program, using a particular proof technique, or performing a

particular analysis. It provides an answer to the question “What do you

know how to do?”

Assessment: The student is able to consider a concept from multiple

viewpoints and/or justify the selection of a particular approach to solve a

problem. This level of mastery implies more than using a concept; it

involves the ability to select an appropriate approach from understood

alternatives. It provides an answer to the question “Why would you do

that?”

Course Master

Modified

Dr. Lakshmish Ramaswamy

3/13/2024 by Dr. Ramaswamy

