
Course Information Sheet
CSCI 1730

Systems Programming

Brief Course Description
(50-words or less)

Programs and programming techniques used in systems programming in
Unix environments. Focus on Unix system call interfaces and the interface
between the Unix kernel and application software running in Unix
environments.

Extended Course Description
/ Comments

Students will learn the basics of Unix systems programming, including file
and directory structures, basic and advanced file I/O, process creation, and
inter-process communication.

Pre-Requisites Prerequisite: CSCI 1302

Required, Elective or Selected
Elective

Required Course

Approved Textbook Author: W. Richard Stevens and Stephen A. Rago
Title: Advanced Programming in the UNIX Environment
Edition: 3rd Edition
ISBN-13: 978-0321637734

Specific Learning Outcomes
(Performance Indicators)

1. Navigate a Unix based system and use tools and commands for
system programming.

2. Trace, design, and implement software solutions to non-trivial
problems using the C programming language.

3. Trace, design, and implement software solutions to non-trivial
problems using the C++ programming language.

4. Trace, design, and implement programs that spawn multiple processes
or multiple threads and utilize inter-process communication.

5. Understand binary representation of integers in memory and use
bitwise operators to solve problems.

6. Compare and contrast various programming paradigms.

ABET Learning Outcomes A. Graduates of the program will have an ability to: Analyze a complex
computing problem and to apply principles of computing and other
relevant disciplines to identify solutions.

B. Design, implement, and evaluate a computing-based solution to meet
a given set of computing requirements in the context of the program’s
discipline.

C. Communicate effectively in a variety of professional contexts.
D. Recognize professional responsibilities and make informed judgments

in computing practice based on legal and ethical principles.
E. Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.
F. Apply computer science theory and software development

fundamentals to produce computing-based solutions.

NOTE: In the construction of the student learning outcomes for this

course, the instructors interpreted “computing requirements” in (B) as the
functional requirements for a software solution and not as specific
hardware requirements for the target platform; likewise, the phrase “apply
computer science theory” in (F) was interpreted as using computer
science principles.

Relationship Between
Student Outcomes and

Learning Outcomes

 ABET Learning Outcomes

Specific
Learning
Outcomes

 A B C D E F

1	 l

2	 l l l

3	 l l l

4	 l l l

5	 l l l

6	 l l

Major Topics Covered

1. Systems Programming Tools (Knowledge level: Usage)

a) Use emacs or vi to write programs in a Unix environment.
b) Use basic Unix commands including (but not limited to): cd, pwd,

mkdir, ls, grep, man, apropos, ps, kill, top, less, more, chmod, cp,
mv, rm, diff, sort, wc, and find.

c) Use the command line in a Unix environment to run processes and to
pipe or redirect input or output.

d) Demonstrate an understanding of the Unix file system by changing
file permissions to allow programs to open, close, read, and write
files.

e) Use a Makefile to compile and run a program with more than one
header file and more than one source code file.

f) Use GDB to debug programs with various errors.
g) Use valgrind to find memory leaks in programs. Implement

programs that use dynamic memory allocation and deallocation and
have no memory leaks.

2. C Programming (Knowledge level: Usage)

a) Compile, link, and run programs via the command line.
b) Design and implement header files that use preprocessor directives.
c) Design and implement programs that use basic programming and

flow of control structures such as (but not limited to) variables,
operators, expressions, decisions statements, loops, pointers, and
functions (prototyping, calling, and passing arguments to functions).

d) Demonstrate knowledge of simple data structures (arrays, strings,
structs, enums, unions) by writing out their memory maps and
tracing through the output of source code.

e) Demonstrate knowledge of pointers and arrays by tracing through
the output of source code containing pointers to 1D arrays, 2D

arrays, and 3D arrays.
f) Design and implement programs that uses command-line arguments.
g) Design and implement programs in a Unix environment that open,

close, read, and write files.
h) Design and implement a program that uses pointers and dynamic

memory allocation and deallocation.

3. C++ Programming (Knowledge level: Usage)

a) Design and implement basic object oriented and structured
programming concepts in C++.

b) Use simple data structures and classes in C++ such as string, vector,
and list.

c) Design and implement a program that consists of more than one
class, a constructor, a destructor, a pointer, and more than one
object.

4. Process and Inter-process Communication (Knowledge level: Usage)

a) Design and implement programs that use system calls and signal
handling (fork, exec, wait, etc.) and run concurrently.

b) Design and implement programs that use pipe and dup2 for
input/output redirection and inter-process communication.

c) Design and implement a multithreaded program.
d) Design and implement client and server programs that communicate

via a socket in a Unix environment.

5. Binary Representation (Knowledge level: Usage)

a) Understand how unsigned integers are represented and stored in
memory by converting unsigned integers to and from base-10 to
binary.

b) Understand how signed integers are represented and stored in
memory using two’s complement representation by converting
signed integers to and from base-10 to binary.

c) Design and implement a program that uses bitwise operators on
unsigned integers.

6. Programming Paradigms (Knowledge level: Familiarity)

a) Explain some key differences between Java, C++, and C such as (but
not limited to): object oriented vs. procedural programming
languages, lower level vs. higher level programming languages,
dynamic memory allocation and deallocation, and pointers.

b) Compare and contrast generic models in C, C++, and Java (e.g. void
pointers vs templates/generics, templates/generics vs macros).

Knowledge Levels The following is the ACM’s categorization of different levels of mastery:
Assessment, Usage, and Familiarity. Note that Assessment encompasses
both Usage and Familiarity, and Usage encompasses Familiarity.

Familiarity: The student understands what a concept is or what it means.

This level of mastery concerns a basic awareness of a concept as opposed to
expecting real facility with its application. It provides an answer to the
question “What do you know about this?”

Usage: The student is able to use or apply a concept in a concrete way.
Using a concept may include, for example, appropriately using a specific
concept in a program, using a particular proof technique, or performing a
particular analysis. It provides an answer to the question “What do you
know how to do?”

Assessment: The student is able to consider a concept from multiple
viewpoints and/or justify the selection of a particular approach to solve a
problem. This level of mastery implies more than using a concept; it
involves the ability to select an appropriate approach from understood
alternatives. It provides an answer to the question “Why would you do
that?”

Modified 09/21/2022
Approved Not yet

