

Course Information Sheet

CSCI 4500
Programming Languages

Brief Course Description

(50-words or less)

In this course we will explore modern programming languages and the paradigm

-- procedural or imperative, functional, and logic programming -- that each

strives to accommodate. Projects involve at least three languages to get a feel for

the language paradigms

Extended Course

Description / Comments

We will cover both past and present languages, with an emphasis on modern

programming languages. We will look at a wide spectrum of styles of

programming that include imperative, scripting, functional, logic and object

oriented languages and evaluate their strengths and limitations.

Specific topics include:

• Syntax and semantics.

• Names, binding and scope.

• Imperative, functional, logical based and object oriented paradigm.

• Types.

• Control flow.

• Programming: Functional, Scripting and Logical Programming.

Pre-Requisites and/or Co-

Requisites

CSCI 1302: Software Development (Pre-Requisite)

CSCI 2720: Data Structures (Co-Requisite)

Required, Elective or

Selected Elective

Selected Elective Course

Approved Textbooks

(if more than one listed, the

textbook used is up to the

instructor’s discretion)

Author: Michael L. Scott

Title: Programming Languages Pragmatics

Edition: 3 or later.

ISBN-13: 978-0123745149 or later.

Author: Robert W. Sebesta

Title: Concept of Programming Languages

Edition: 9 or later

ISBN-13: 978-0131395312 or later

Specific Learning Outcomes

(Performance Indicators)

At the completion of this course students should be able to do the following:

1. Explain the differences between imperative, functional and logical

paradigms.

2. Explain why it is important to understand these programming language

paradigms.

3. Explain when (and why) one paradigm is more applicable than another

paradigm.

4. Create a lexer (using a tool like flex or lex) for a simple language.

5. Create a simple parser (using a tool like bison) for simple language.

6. Create and design a program using a functional programming language.

7. Create and design a program using a logical programming language.

8. Create and design a program using a scripting language

9. Demonstrate comprehension of short programs written in

functional, imperative and logic paradigms.

10. Explain and evaluate design and implementation features of programming

languages.

Relationship Between

Student Outcomes and

Learning Outcomes

 Student Outcomes

 a b c d e f g h i j k

Le
ar

n
in

g
O

u
tc

o
m

es

 ⚫ ⚫ ⚫

 ⚫ ⚫

 ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫

6 ⚫ ⚫ ⚫ ⚫

7 ⚫ ⚫ ⚫ ⚫

8 ⚫ ⚫ ⚫ ⚫

9 ⚫ ⚫ ⚫

10 ⚫ ⚫ ⚫ ⚫

Major Topics Covered

(Approximate Course Hours)

3 credit hours = 37.5 contact

hours

4 credit hours = 50 contact

hours

Note: Exams count as a major

topic covered

Overview of Programming Languages (4 hours)

Programming Language Paradigms (4 hours)

Programming Languages Syntax and Semantics (4-hours)

Scanning in Practice (4-hours)

Parsing in Practice (4-hours)

Functional Languages (lazy evaluation, evaluation order, higher order

functions, currying, closures, static & dynamic scope, side- effects,

introduction to LISP like languages, LIPS or Scheme and modern

mainstream functional programming languages like Clojure, Groovy and

Scala) (8 hours)

Polymorphism (4 hours)

Control Flow (4 hours)

Names, Binding, Scope (4 hours)

Scripting (4 hours)

Data types (4 hours)

Logical Languages (4 hours)

Course Master

Dr. Maria Hybinette

