

# Course Information Sheet CSCI 4530

#### Robotics

#### **Brief Course Description**

(50-words or less)

This is an introduction to robotics with a focus on autonomous mobile robots. The two significant topics dealt with are (1) robotic perception and (2) motion planning. Perception addresses problem-solving using sensory inputs and desired goals. Motion planning deals with aspects of the movement of autonomous rovers in unknown environments, integrating mobile robot localization and mapping algorithms.

## **Extended Course Description / Comments**

This course is cross-listed with ARTI 4530

#### Pre-Requisites and/or Co-Requisites

CSCI 2720: Data Structures

And Permission of Department

### Required, Elective or Selected Elective

Selected Elective Course

#### Approved Textbooks (if more than one listed, the textbook used is up to the instructor's discretion)

Author(s): Siegwart, Nourbakhsh, and Scaramuzza Title: *Introduction to Autonomous Mobile Robots* Edition: MIT Press. 2<sup>nd</sup> Edition (2011)

ISBN-13: 978-0-01535-6

### Specific Learning Outcomes (Performance Indicators)

- 1. Familiar with robot control architectures.
- 2. Familiar with the robot perception and planning algorithms that provide meaningful outcomes for autonomous mobile robots.
- 3. Design and analyze the complexities of designing and constructing small autonomous mobile robots that achieve specific goals.
- 4. Utilize robot simulators and software development frameworks for programming mobile robots that achieve specific goals.
- 5. Design, analyze, and implement mobile robot algorithms using simulated and real-world sensor data.
- 6. Familiar with the state-of-the-art of autonomous mobile robotics.

#### **ABET Learning Outcomes**

- A. Graduates of the program will have an ability to: Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- B. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- C. Communicate effectively in a variety of professional contexts.
- D. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- E. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- F. Apply computer science theory and software development fundamentals to

produce computing-based solutions.

NOTE: In the construction of the student learning outcomes for this course, the instructors interpreted "computing requirements" in (B) as the functional requirements for a software solution and not as specific hardware requirements for the target platform; likewise, the phrase "[a]pply computer science theory" in (F) was interpreted as using computer science principles.

#### Relationship Between Student Outcomes and Learning Outcomes

|                              | ABET Learning Outcomes |   |   |   |   |   |   |
|------------------------------|------------------------|---|---|---|---|---|---|
|                              |                        | A | В | С | D | Е | F |
| Student Learning<br>Outcomes | 1.                     | • | • | • |   |   | • |
|                              | 2.                     | • | • | • |   |   | • |
|                              | 3.                     | • | • |   |   |   | • |
|                              | 4.                     | • | • |   |   |   | • |
|                              | 5.                     | • | • |   |   | • | • |
|                              | 6.                     | • | • | • |   |   | • |

### **Major Topics Covered**

(Approximate Course Hours)

3 credit hours = 37.5 contact hours

4 credit hours = 50 contact hours

Note: Exams count as a major topic covered

- 1. Introduction and History of Robotics (4 Hours)
- 2. Robot Kinematics and Control (7 Hours)
- 3. Robot Perception Algorithms (7 Hours)
- 4. Robot Probabilistic Methods for Robotics (3 Hours)
- 5. Localization and Mapping Algorithms (10 Hours)
- 6. Robot Motion Planning Methods (10 Hours)
- 7. Robot Behavior Architectures (5 Hours)
- 8. Robot Applications and Advanced Topics (4 Hours)

**Course Master** 

Dr. Ramviyas Parasuraman

Modified

3/18/2024 by Dr. Ramviyas Parasuraman