Course Information Sheet

CSCI 4550
Artificial Intelligence

Brief Course Description
(50-words or less)
An introduction to the fundamental concepts in computer science, including algorithms and logic, and the theoretical foundations in philosophy that define the field of artificial intelligence.

Extended Course Description / Comments
This course is cross-listed with PHIL 4550 and is a 3-credit hour course.

Pre-Requisites and/or Co-Requisites
CSCI 2610: Discrete Mathematics for Computer Science
Or PHIL 2500: Symbolic Logic

Required, Elective or Selected Elective
Selected Elective Course

Approved Textbooks
(if more than one listed, the textbook used is up to the instructor’s discretion)
Author(s): Stuart Russell and Peter Norvig
Title: *AI: A Modern Approach*
Edition: 3rd

Specific Learning Outcomes
(Performance Indicators)
This course presents a survey of topics in artificial intelligence most relevant to students studying computer engineering. At the end of the semester, all students will be able to do the following:
1. Represent the environments of decision making problems including their observability, determinism, continuousness, and other criteria
2. Identify and compare agent types, such as reflex, goal-based, and utility-based
3. Implement uninformed search strategies such as BFS, DFS, depth- limited search, and bidirectional search
4. Implement heuristics in informed search strategies, as well as identify the aspects of a good heuristic
5. Evaluate the effectiveness of local search algorithms, including hill-climbing, simulated annealing, and beam searches
6. Evaluate competitive game outcomes by using minimax algorithms, alpha-beta pruning, and evaluation functions
7. Utilize basic inferencing rules in propositional logic, such as resolution and forward/backward chaining
8. Express propositional statements using quantifiers and functions in First-Order logic
9. Implement Java or written algorithms that evaluate goal-oriented problems using propositional or first-order propositional logic
10. Represent knowledge using constructs such as Ontologies
<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Student Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>☐</td>
</tr>
<tr>
<td>4</td>
<td>☐</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>☐</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Major Topics Covered
(Approximate Course Hours)

3 credit hours = 37.5 contact hours
4 credit hours = 50 contact hours
Note: Exams count as a major topic covered

- Intelligent Agent Design (4-hours)
- Uninformed Search (3.5-hours)
- Informed Search (3.5-hours)
- Adversarial Search (3.5-hours)
- Propositional Logic Syntax (3-hours)
- Knowledge-Based Agents (1-hour)
- Inferencing Rules in Prop. Logic (2-hours)
- First-Order Propositional Logic Syntax (3-hours)
- Inferencing with Quantifiers (1-hour)
- Forward and Backward Chaining (2-hours)
- Knowledge Representation (5-hours)
- Classical Planning (1.5-hours)
- Exams (4.5-hours)

Course Master
Dr. Khaled Rasheed